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Introduction:

The goal of our proposed research is to identify new strategies for inhibiting
neuronal apoptosis, which occurs in neuronal trauma and degenerative diseases. We have
begun to explore the molecular basis for apoptosis in kainic acid-induced
neurodegeneration, a commonly used animal model for human temporal lobe epilepsy.
Rats treated with kainic acid (KA) suffer recurrent convulsive seizures and apoptotic
neuron loss in the CA1 and CA3 regions of the hippocampus. We hypothesized that KA
chronically stimulates signal transduction pathways linked to apoptotic gene induction
within sensitive populations of hippocampal neurons. In support of this hypothesis, we
studied several distinct signal transduction pathways in the hippocampus following
systemic exposure of KA. In particular, immunochemical studies and electromobility gel
shift assays (EMSAs) demonstrate activation by KA of the NFxB (nuclear factor kappa
B) system, the AP-1 (activator protein 1) system, and the p38 mitogen activated protein
kinase (p38 MAPK) pathway. Most interestingly, treatment of the KA-exposed animals
with the compound phenyl-N-tert-butylnitrone (PBN) inhibits KA-induced neuronal
apoptosis, down-regulates apoptosis-associated gene expression, and prevents seizure

activity and death.

Body:
This section of the report is associated with each task outlined in the approved
Statement of Work

A. Continue to elucidate the molecular mechanisms that underlie excitatory neurotoxin
induced neurodegeneration. These will be assessed by using RNA protection assay
for inflammatory cytokines and apoptosis-related genes (bl 2, bax, caspase 1, 2, and
3), gel mobility shift assay for AP-1 and NF&B transcription factors, Northern and
Western blot analyses for KA-induced mRNAs encoding Fos-related antigens, and c-
Jun related transcription factors, and expression of inducible nitric oxide synthase

(iNOS).




To elucidate the molecular mechanisms that underlie excitatory neurotoxin induced
neurodegeneration, we sought to determine whether cytokine and proapoptotic genes
were being transcribed at a greater rate in the KA treated rats than in normal rats, and
whether PBN could abrogate such an effect. Using a multiprobe ribonuclease protection
assay, several inflammatory cytokines were clearly found to be transcribed following KA
treatment (Fig. 5, Appendix 1), such as ILla, IL1-B, IL-6 and TNF-o. Within the
timeframe that cytokine transcription was enhanced, several proapoptotic genes were also
induced. Most notably, the Fas antigen mRNA was strongly induced following KA and
this elevation was maintained for at least four days (Fig. 6, Appendix 1). PBN treatment
suppressed transcription of both inflammatory cytokine gene products and proapoptotic
gene products; however, PBN treatment had a minimal effect on transcription of
constitutively-expressed “housekeeping genes” including the L-32 ribosomal mRNA and
glyceraldehyde phosphate dehydrogenase mRNA (Figs. 5-6, Appendix 1). PBN
suppression of cytokine mRNA transcription was relatively unspecific. Interestingly,
PBN displayed particular potency in suppressing Fas antigen and caspase 3 transcription,
while other apoptosis-associated mRNA species analyzed by RPA were somewhat less

affected by the nitrone (Fig. 6, Appendix 1).

The immunochemical analysis of KA-treated rats was aimed at determining whether
PBN could antagonize the AP-1 system in vivo. Immunocytochemical analysis was
performed using well-characterized antibodies against the two AP-1 subunits, c-Fos and
c-Jun. Within hours of KA treatment, c-Fos and c-Jun expression increased in
hippocampal neurons, particularly within the CA1 and CA3 regions (Fig. 1). The c-Fos
and c-Jun expression was maintained throughout the 4 day experiment (not illustrated),
which is consistent with previously reported data (Bing et al., 1997). A single injection
of PBN completely suppressed c-Jun expression in both CA regions and in the dentate
gyrus (Fig. 1), but suppression of c-Fos expression only in the CAl and CA3 regions,
where most of the pathological changes manifested (Fig. 1). It may be significant to
note that c-Jun expression can be induced rapidly in neurons during growth factor
deprivation, but c-Fos expression seems to be restricted to those populations of neurons

that actually commit to an apoptotic program (Estus et al. 1994).




B. Continue to elucidate the protective mechanisms of nitrone antioxidants in KA-
induced neurodegeneration by characterizing the activation of p38 and JNK
pathways as well as AP-1 and NFxB DNA binding activities.

The AP-1 pathway is but one of numerous signal transduction pathways which have
been associated with cellular stress and linked to ligand-induced neurotoxicity. In
particular, the p38 MAPK pathway has been repeatedly linked to neuronal apoptosis and,
in some circumstances, may indirectly activate both the AP-1 and NFkB pathways
(Schulze-Osthoff et al. 1997; Vanden Berghe 1998). The p38 mitogen-activated protein
kinase pathway has been causally linked to neuronal apoptosis induced by growth factor
withdrawal (Xia et al. 1995; Kummer et al. 1997). We therefore undertook an
immunohistochemical analysis of p38 activation using an antibody specifically directed
against the dual-phosphorylation motif which is only present on the active p38 kinase
(Raingeaud et al., 1995). Within 4 hours of KA treatment, p38 activation was seen
within the hippocampus in a pattern consistent with that of AP-1 activation (Fig. 3,
Appendix 1). As in the case of AP-1, PBN suppressed p38 phospho-activation (Fig. 3
Appendix 1,). The p38 system remained activated somewhat above the level of controls
at the four day timepoint, but this chronic activation was not as dramatic as in the AP-1
case (not shown).

The NFxB transcription factor is also ubiquitously activated by physiologic stress and
may potentiate excitotoxic damage in striatal neurons (Qin et al. 1998). Alternatively,
NFkB seems to serve a protective role in hippocampal neurons undergoing an oxidative
insult (Mattson et al. 1997) and may actually play an anti-apoptotic role in TNFo.-
stimulated cells (Van Antwerp et al. 1996; Wang et al. 1998). NFxB is part of a signal
transduction cascade which has traditionally been thought of as distinct from the Jnk and
p38 cascade modules, though correlated activation of the three pathways is often noted in
cell culture experiments. We therefore sought to determine whether NFkB was
activated by KA in a PBN-sensitive manner. As shown in Fig. 4, NFxB-p65
immunoreactivity in the hippocampus increased dramatically within hours of KA
treatment, and this effect was suppressed by PBN. The immunochemical data

corroborated by EMSA analysis, showed a dramatic increase of NFxB binding activity




in hippocampal nuclei of KA treated rats, which was partially mitigated by PBN
cotreatment (Fig. 4, Appendix 1).

C. Test several other nitrone antioxidants for the protective action against kainic acid
induced neuro-degeneration. In previous studies, we have tested several PBN
derivatives for anti-inflammatory activities using a macrophage system. Based on the
results of this cellular screening we selected four PBN type nitrones having a
substituted phenyl group which showed the most effectiveness in neuroprotective
actions. These are 2-hydroxy PBN (2-OHPBN), 3-hydroxy PBN (3-OHPBN), 4-
hydroxy PBN (4-OHPBN), 2-sulfo- PBN (2-SPBN), and salicyl t-butylnitrone
(SALBN).

We have studied other nitrone antioxidants for the protective action against kainic
acid. Those were 2-hydroxy PBN (2-OHPBN), 3-hydroxy PBN (3-OHPBN), 4-hydroxy
PBN (4-OHPBN), 2-sulfo-PBN (2-SPBN). However, all of above-mentioned compounds
had less effect than PBN in vivo. This may be partially due to the brain blood barrier that
these reagents have to pass to have an effect on the hippocampal neurons. We will try to
use our established neuron/glial mixed culture to test these reagents since they have been

tested in our microglial culture system and showed anti-inflammatory effects.

D. Additional findings:

In our searching for transcription factor in KA induced neurodegeneration, we
have collaborated with Dr. Feng to successfully cloned a fos-related antigen. This is a
transcriptional factor that also related to guanosine triphosphate regulation (Appendix 2,
P.I as a corresponding author). With a full length cDNA (Fig. 1, Appendix 2) and Gel
retardation analysis (Fig. 4, Appendix 2), we were able to reveal that this gene may

function as a GTP regulation related factor.




Key Research Accomplishment:

o Established kainic acid induced neuronal damage in adult rats as a model to
study excitatory amino acid-induced neurodegenerative diseases by Terminal
deoxyuridine nick-end labeling (TUNEL) for apoptotic cell death, Nissl
staining and immunohistochemical assays.

e Demonstrated that nitrone antioxidant, PBN, inhibits KA_induced neuronal
apoptosis, down regulates apoptosis-associate gene expression, and moreover,
prevents seizure activity and death.

o Elucidated the molecular mechanisms underlying the nitrone antioxidants’
protective functions against KA-induced neurodegeneration with signal
transduction pathways by studying the activation of NFkB, p38, and AP-1.

e Tested several other PBN related antioxidants in Kainic acid induced
neurodegeneration.

e Cloned a new gene that related to GTP regulation

Reportable Outcomes:

Reprint:

Abstract and Presentation:

Animal Model: We have successfully used KA-induced neurodegeneration as a
animal model for delayed neuronal cell death that occurred in many neurodegeneration
diseases such and Alzheimer’s and Parkinson’s diseases.

Cloning of a new gene: Cloned MP 13 gene from rat hippocampus after kainic

acid treatment.

Conclusion:

The findings of the present study extend upon previous observations concerning
the broad-spectrum neuroprotective action of nitrone compounds, and provide a novel
context for discussing the pathology of excitotoxicity. PBN and related nitrones have

been shown to suppress striatal excitotoxic lesions induced by KA. The present data




suggest that suppression of apoptosis by PBN in the KA model and possibly other models
of neurodegeneration is likely due to mitigation of proinflammatory or proapoptotic gene
expression under the control of the AP-1, NFkB, and p38 MAPK pathways. While the
ultimate cellular target(s) for PBN action remain unclear, the present data suggest that the
broad-spectrum neuroprotective action of the nitrone class of compounds might be due,
in part, to antagonism of crucial oxidation-sensitive signal transduction elements linked

to the initiation of apoptotic programs.
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375.3
PHENIDONE PREVENTS KAINATEANDUCED NEUROTOXICITY VIA ANTIOXIDANT

MECHANISMS. H.C. Kim1, W.K. Jhool, G.Y. BingZ E.J. Shinl, M.B. Wie3, WK. Kim®,
KH. Ko®. INeurotoxicol. Prog., Dept. Pharmacy, Coll. Pharmacy, Kangwon Nationa! Univ.,
Korea Institute of Drug Abuse, Chunchon, North Korea, 2Free Radic. Biol. & Aging Res. Prog.,
OMRE, Oklahoma City, OK; US4, 3Dcpt. Vet. Med. Inst. Life Sci., Cheju National Univ., Cheju,
North Korea, 4Dept. Pharmacol., Coll. Med., Ewha Med. Res. CTR., Ewha Womans Univ.,

Seoul, North Korea, 5Dept. Pharmacy, Coll. Pharmacy, Seoul National Univ., Seoul, North Korea
In order to extend our understanding of the pharmacological intervention of phenidone, we eval-
uated antioxidant activity of this compound i vivo in the present study. In order to better under-
stand the significance of a blockade of both cyclooxygenase and lipoxygenase pathways, we stud-
fed the effects of aspirin {ASP; a non-selective inhibitor of cyclooxygenase), NS-398 (a selective
inhibitor of cyclooxygenase-2), esculetin (a inhibitor of! Tipoxygenase) and phenidone ( co~inhibitor)
on lipid peroxidation, protein oxidation, and glutathione (GSH) status in the rat hippocampus after
“ administration. ASP, NS-398, esculetin or phenidone was administered orally five times every
12 h before the injection of KA. The KA-induced toxic behavioral signs, oxidative stress, impair-
ment of GSH status, and the loss of hippocampal neurons were significantly attenuated by the
Phc.nidonc in a dose-dependent manner. However, ASP, NS-398 and esculetin failed to protect
against the neurotoxicities induced by KA. Therefore, the results suggest that blockade of both
elooxygenase and fipoxygenase pathways are responsible for KA-induced neuroexcitotoxicity via
antioxidant machanisms. Supported by: BK 21 project, and a grant (#HMP-98-N-2-0013 ) of the Good
Health Research and Development Project (1998) of Ministry of Health and Welfare, Republic of Korea.

3814
THE EFFECT OF INTERLEUKIN-10 ON LIPOPOLYSACCHARIDE-INDUCED NEU-

RODEGENERATION IN SUBSTANTIA NIGRA DOPAMINERGIC NEURON. T. Arimoto,
X. Ly, C.A. Stewart‘, G.Y. Bing. Free Radical Biology and Aging, Oklaboma Medical Research
Foundation, Oklakoma City, OK, USA

Injection of the bacteria endotoxin lipopolysacchari
activation of microglia and the significant loss of dopaminergic neurons. The ap|

matory processes including immunc responses play an important role in the development and pro-
eneration. The present study is to examine whether LPS-induced neurode-

de (LPS) in substantia nira (SN) resulted in the
parently, inflam-

gression of neurodeg
generation could be attenuated by interleukin (IL)-1
Single intranigral injection of IL-10 (44 ng) or osmotic pump infusion (60 ng/day) for 14 days in
right SN before LPS (5 pg) increased tyrosine hydroxylase-immunoreactivity in the SN. Ribonu-
crease protection assay revealed that LPS treatment in right SN significantly induced mRNA for
1L-1§, IL-6, and TNF-0. at 24 hrs after the injection, as compared the left side. These cytokine
expressions were significantly inhibited by IL-10 injection before LPS treatment. These results
indicate that IL-10 could protect against LPS-induced neurodegeneration in SN through the down-
regulation of inflammatory cytokine expression. (This study was supported by USAMRMC

98228027 and RO1 NS39345 Granted to GB)

0, a global inhibitor of cytokine synthesis.

390.6
LONG-TERM ELEVATION OF GLUTATHIONE S-TRANSFERASE YC SUBUNIT IN RAT
HIPPOCAMPUS AFTER KAINATE INJECTION. L. ]in‘, N.Y. Zheng, M. Zhu, R.Nadl
L.L. Zhao, G.Y. Bing. Free Radical Biology and Aging, Oklakoma Med Res Fndn, Oklahoma
City, OK, US4 . e
Our previous work has shown that differential expression of the genes after kainic aclt_i (KA) inje
tion may underlie the molecular mechanisms for sp usly convulsive seizure iCﬂ."m‘s' g
the suppression subtractive hybridization (SSH) and PCR-select differential SCI_CCI““E:H e
(Clontech, Palo Alto, CA). We have found more than 120 genes that have been different i
ulated by KA injection. Glutathione S-transferase Y subunit (GSTYc) was found' tobe O'Eom ot
genes that shown long-term elevation. Northern Blot analysis of the total RNA ,sola.ted
hippocampus 6 h, 1 day, 1 week , 2 wecks, and 3 months after KA (n=3 for each time POmSKk ot
that GSTYc was initially down regulated at 6 h and 1 day, but dramatically inf‘-Y‘C”C.d 1{ " ST
KA injection and persisted at higher level for at least three months. In situ hybridization s

revealed a marked increase of GSTYc in both neurons and glhial cells at 2 weeks md. 3 mon Juced
involve in KA-
subunit may pl&y > i

KA: injection. The present study indicated that free radical damage may 1
recurrent convulsive seizure activities. These results suggests that GSTYe o

tant role in long-term pathophysiological changes in rat model of human tempo! Rot Nmys
(This study was supported by the OCAST HR98-004, USAMRMC 98228027,_3ﬂd '
Granted to GB) )

379.14

PROLONGED EXPOSURE TO ﬁAMYLOIi) PROTEIN ) .
o ENHANCES 4-HYDROXY.-
D.H.n:r:;n;l;:ns :i:tln:m: mlme RAT BRAIN. W.K. lhool, H.C.Kim1, I’éy Yjs:ig
P Dep;. o ,Ci} ark?, GY. Bmg3, KJ. _Iang1 » T. Nabeshima2. JNet.lroloxim[}
e Cbum}m‘:,,]( egzz of Pharmacy, Kangwon National University, Korea Imtituteg;’
Um-vm,ity ;.tm, qfﬁlj;d{::: Aigq:; If;rop:);;@bamamlogy and Hospital Pl.mrmzuy, Nagoya
: A 4, japan, ¥ Free Radic. Biol, €5 Ao, »
Ivlg:zfic:ol f::ﬂb {:oléndnvztion: Oklabama City, OK, United States z;;g;:frij g, Ot
brane bt o ;:; at{noc{xﬁcanon of proteins by 4-hydroxy-2-nonenal(HNE), a product of
12) e erida ::: ‘: 1thcA rat .bram foll?wing continuous infusion of ﬁ-;m;loid ro(:eix:fg:
ron of the cortex, Ammon’z :omma.:: Ic;i::t]it:ngr;‘::l)macltli Vir%’}“l"as roedin he P)"‘:nida-l ain
t : e ce i i i
::1; ,‘:ie:;:; So:'n i;zm);loxd prarein:z-(40—1)—inﬁxsed brain. Howsc\‘:er, tl}}:s :’:{‘;22‘;1’;“;;;3};’"’;;““ "-‘
AT r}: ;;xg-unceld u(; the A.mmon's horn of hippocampus and thalamic area foll‘:::ir:
et ey smimamy t:;' protein~(1-42), HNE-immunoreactive astrocytes were prolifcf
ons, Coonoin the srt m ra xarum. of tlfe CA1 sector without significant neuronal degenera-’
o DA peend X, e xmmunorea.ctxon with 8-hydroxyguanosine (a marker of oxidati ge
) was enhanced in these brain regions after chronic exposure to ﬂ-anvl;lo?gjzlgf

42). Therefore, our findin
c 2 gs suggest that B-amyloid protein- medi idati
productions qf HNE and 8»hydroxygua.nosincyin thi ;tmbtai:c‘imed dahe sl o e

481.19

ENHANCED EXPRESSION OF MICROSOMAL EPOXIDE HYDROLASE IN RAT ASTRO-
CYTES BY LIPOPOLYSACCHARIDE AND INFLAMMATORY CYTOKINES: A TISSUE
S!-’E(;!Flc REGULATION. A.Y. Sun!, N. Zheng, M. Zhul, M. Westl, HL.C. Kim2 GY-
Bingl". 1 Free Raddical Biology and Aging, Oklaboma Medi ’I’Qt:eartl)ﬁb ’ "-‘r'.m Cr?“, homa

I\C/Itz,u OK, all]SA, 2 College of P/)armaty, Chunchon, South Korea

Mi il.ls:)hm cpo;ud'e hydrolase (.mIIZH) is a critical biotransformation enzyme that plays a central
ok dct:ﬂ r:;t;yt;:;;mt of x;;xob.lotlcs. Zn present study, mEH levels in cultured cortical astrocytes

stern blotting, and the effect of lipopol hari i

o | | : ipopolysaccharide (LPS) and ki
:osadmzpresim}? were examined. quescent astrocytes express basic level of mEH wxc'{l;oa n:e(x’:tl
ok LPaSr wt:g t SQ kDa. but their levels varied with the growth status. Incubati;n of act!z"i es
1B m /a;xﬂ ) cytt’)Il.(’:\?;s ca(l(x)s;d a dose-dependent increase in mEH levels. LPS (100 pg}kg)ql’t].r

3 , or ~0(0.5 ug /ml) induced a 3-5 fold increase of mEH. A 6 v
. . . i u R .
zx:n x::;caled th{at induction of m.EH proteins by LPS was evident after 24 h ncatmrtrcltc:::is:;:;lcyd
ama thr:t:nm a,;;:l Zsh. IL-1 i mdui:;:; response of mEH expression much earlier t,han TNF-g.
ponses observed after 24 hand 72 h, 1 i )
’;L‘Ig\;/;ﬂ) orllily. showed a small effect on mEH ion I;e:s;‘i:ttil:ly Byf?ntr'as‘t’ 1:?1}{61—10’[;_7 (;
! d , Xp ) ¢ iohs -1Ba
“Premo:; ;::;S;g ;:dl\:x;'xsox’lr Zf mEHulexprcssxon quite similar to the temporal parttcrn‘of mEr;-I
0 y - These results provide the first demonstration th i

factors differentially regulate the xenobiotics bi Mt e

; otics biotransformation enzymes, with an induction
astrocytes in contrast to depression in liver. The potential funct ot prgiion mnsn.
rodegenerative diseases therefore warran 2 futher nvestigation. s sy Etton fn s

t a furth igati i

USAMRMC 98228027 and R01 NS39345 Grante:dutl: ng&)ﬁ"o"‘ (T sty wessuppored by

SociETY FOR NEUROSCIENCE, VoLumE 26, 2000



S e s

J Neural Transm (2000) [Suppl] 60: 387-414
© Springer-Verlag 2000

Evidence for enhanced neuro-inflammatory processes in
neurodegenerative diseases and the action of nitrones as
potential therapeutics

R. A. Floyd!?, K. Hensley?, and G. Bing?

'Free Radical Biology and Aging Research Program, Oklahoma Medical Research
Foundation, Oklahoma City, OK, U.S.A.
2Department of Biochemistry and Molecular Biology, University of Oklahoma Health
Sciences Center, Oklahoma City, OK, U.S.A.

Summary. A brief review is presented on observations leading to the cur-
rent notions regarding neuro-inflammatory processes. The greatest focus is
on Alzheimer’s disease (AD) since this is where the most convincing data
has been obtained. A brief summary of observations on the neuroprotective
action of a-phenyl-tert-butyl-nitrone (PBN) as well as results of research
designed to understand its mechanism of action is presented. We hypo-
thesize that the mechanism of action of PBN involves inhibition of signal
transduction processes, which are involved in the upregulation of genes medi-
ated by pro-inflammatory cytokines and H,O, that cause formation of toxic
gene products. Results from recent experiments on Kainic acid (KA) medi-
ated brain damage are provided to suggest the validity of the in vivo action of
PBN to inhibit neuro-inflammatory processes. The accumulating scientific
facts are helping to provide concepts that may become the basis for novel
therapeutic approaches to the treatment of several neurodegenerative
diseases.

Introduction

Our attempts to explain the serendipitous observations made on the
neuroprotective action of a-phenyl-fers-butyl-nitrone (PBN) several years ago
provided a challenge, which lead us to postulate the occurrence of neuro-
inflammatory processes in the stroked and the aging brain to help explain
the results. Surprising observations made earlier by other investigators also
forced them to conclude that enhanced neuro-inflammatory processes occur
in the Alzheimer’s Disease (AD) brain. Observations we made recently,
combined with the early seminal findings and the many others made since,
overwhelmingly support the notion that neuro-inflammatory processes occur
in the AD brain. Results obtained in our attempts to explain the mechanistic
basis of the neuroprotective action of PBN provide strong support for the
notion that this compound acts, not by trapping free radicals in a mass-action
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transduction processes in the classic injury cascade and also activate comple-
ment, which results in an amplified $-amyloid AD cascade”. Their work shows
different cell types collaborate and amplify the f-amyloid triggering events.
Mediators generated by microglia (IL1, TNFa) activate astrocytes to produce
other factors (IL6, etc.) that further activate nearby cells (Cotman et al.,
1996). Thus p-amyloid plaques become “sparking centers” for what turns out
to be “localized smoldering neuro-inflammatory processes” (Floyd, 1999a).
Very recent research pertinent to the molecular events triggering the localized
neuro-inflammatory processes have demonstrated that 3-amyloid activation
of microglia involves the interaction of CD40 receptor and the CD40 ligand
(Tan et al., 1999).

Enhanced reactive oxygen species and oxidative damage are
consequences of neuro-inflammatory processes

Enhanced reactive oxygen species (ROS) and the resulting oxidative damage
is a characteristic feature of the AD brain (Markesbery, 1997; Smith et al.,
1991; Smith et al., 1996). This is probably the result of several neuro-
inflammatory events where ROS are known to be produced in excessive
amounts. Activated microglia produce high levels of superoxide (Colton and
Gilbert, 1987). B-amyloid activates microglia, monocytes and neutrophils to
form superoxide via the NADPH oxidase pathway (Bianca et al., 1999). The
amount of superoxide formed, measured as H,O,, was on the order of 1 nmole
H,O, per 3 X 10° cells in 30 minutes when stimulated with 10puM B-amyloid
peptide. p-Amyloid peptides per se also degrade to form ROS (Hensley et al.,
1994), specifically H,O,, through transition metal ion reductive processes
(Huang et al., 1999). Amyloid precursor protein per se regulates copper
toxicity to neurons (White et al., 1999). H,O, production by p-amyloid pep-
tides per se or by the peptides interacting with microglia may be very impor-
tant in triggering glia activation processes. We have shown that H,O, itself
activates cultured rat astrocytes in a manner very much like IL-1f (Robinson
et al., 1999a). Clearly then H,0O, itself becomes a neuro-inflammatory propa-
gating agent.

Enhanced protein oxidation associated with AD and in aging brain

Enhanced ROS formation would be expected a priori to lead to enhanced
protein oxidation as well as enhanced lipid peroxidation. Significantly higher
levels of protein oxidation have been noted in the AD brain versus the age-
matched control brain (Smith et al., 1991). It was noted that specific brain
regions had higher amounts of oxidized proteins. In general, those regions
most affected by AD had higher levels of protein oxidation. It was also noted
that protein oxidation increased logarithmically with age in normal, i.e.
non-AD subjects. This seems to be a characteristic feature of brain aging.
Increases in oxidized protein in brain with age have been noted in many
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experimental models (Stadtman, 1992), including mice (Dubey et al., 1996;
Forster et al., 1996). rats (Dubey et al., 1995), and gerbils (Dubey et al., 1995;
Carney et al., 1991).

The increased levels of oxidized protein in brain with age could be due to
a decrease in the rate of breakdown of oxidized protein by proteases. The
research of Agarwal and Sohal (1994) addressed this possibility. Their results
show that brain alkaline protease activity, the protease fraction shown to be
responsible for the breakdown of oxidized protein, see references (Oliver
et al., 1984; Mason and Rivett, 1994; Rivett, 1985; Rivett, 1989), does not
decrease with age (Agarwal and Sohal, 1994). From this data they concluded
decreases in alkaline protease activity could not explain the age-related in-
crease in oxidized protein in brain. The point of this discussion is an attempt
to rationalize the data obtained on the neuroprotective activity of PBN in
different models and its affect on brain oxidized protein in rat and gerbil brain
in relation to its proposed action of suppressing signal transduction processes.
The reason why PBN suppresses the amount of oxidized protein in the aged
gerbil brain (Carney et al., 1991; Floyd and Carney, 1996) may be because it
suppresses the signal transduction processes leading to increased ROS gen-
eration caused by the inherent (unknown) activation processes that occur with
age. In contrast to rats and gerbils it was noted, in the only study published,
that the administration of PBN to older mice did not cause a significant
reduction in oxidized protein in cerebral cortex (Dubey et al., 1995). A careful
review of that work showed that there was a trend toward PBN-mediated
reduction in oxidized protein, but it was not large enough to be significant.
This may be because cerebral cortex is a brain region in mouse that does not
change greatly in oxidized protein with age as other brain regions (Dubey et
al., 1996; Foster et al., 1996) and possibly because the mice in the study were
significantly younger (23 months) than the other studies where older mice
were used. Additionally, the mice were administered PBN as bolus injections
(32mg/kg). Administration of it in drinking water, a regiment that has been
shown to prolong life span in mice (Saito et al., 1998), may have been more
effective.

Neuro-inflammatory processes in the aging brain

There are only a few studies in experimental animals directed toward the
examination of the normal aging brain from the perspective of evaluating if
neuro-inflammatory type processes occur. However, these studies do provide
strong evidence to support the notion that neuro-inflammation type processes
are present and do increase with age. Recent detailed studies in this area have
come from Finch’s lab (Rozovsky et al., 1998; Morgan et al., 1999) and from
Morgan’s lab (Gordon et al., 1997). The older literature was referenced by
Finch and Morgan (1990). The results are consistent in showing that aging in
brain is associated with an increased expression of glial fibrillary acidic protein
(GFAP); and that increased GFAP expression is a marker of astrocyte activa-
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tion and is a response to CNS injury. Gordon et al. (1997) showed that injury,
induced by several means, including 6-hydroxy-dopamine injection or a
needle stab wound, to the old brain, caused a more exaggerated astrocyte
response, which persisted much longer than the same injury did in a young
brain. So the old brain responded more to an injury and the response to that
injury persisted for much longer. These studies reinforce the results of our
work in gerbils where we noted that a stroke insult was much more serious
to older animals (Carney et al., 1991; Floyd, 1990). In a careful study where
microglia and astrocytes were collected from 3-, 6-, 12- and 24-month rat
brains, Rozorsky et al. (1998) demonstrated that both microglia and astro-
cytes taken from old brains had more proliferative capacity and expressed
more GFAP than those taken from young brains. TGF-f,, which normally
down-regulates inflammatory processes was less capable of suppressing prolif-
eration of astrocytes and microglia taken from older brains when compared
to younger brains (Rozovsky et al., 1998). Similarly TGF-f3, was less capable
of suppressing LPS-induced nitrate formation in the cultured microglia from
older brains than the microglia from younger brains. Their data was inter-
preted as supporting the “hypothesis that aging promotes a proliferative
microenvironment in the brain”.

Excess nitric oxide and peroxynitrite reaction products in AD brain

Products formed by the reaction of nitric oxide (NO) and peroxynitrite,
(formed by the reaction of NO with superoxide), with cellular components
were shown to be enriched in the affected regions of the AD brain (Smith et
al., 1997; Hensley et al., 1998). This is also clear evidence of the involvement
of neuro-inflammatory processes in the AD brain. It is known that pro-
inflammatory cytokines as well as $-amyloid stimulates the production of NO
in astrocytes (Akama et al., 1998). 3-Amyloid enhanced NO production by
astrocytes involves NFkB-mediated mechanisms (Akama et al., 1998). En-
hanced NO production most likely occurs because of the induction of induc-
ible nitric oxide synthase (iNOS) which mediates the formation of large
amounts of NO. Utilizing three different antibodies to 3-nitro-tyrosine, (a
product formed by the reaction of peroxynitrite with protein tyrosines), Smith
et al. (1997) demonstrated significant 3-nitro-tyrosine staining in affected
regions of AD brain but none in comparable age-matched control brain
regions. Using novel HPLC-electrochemical detection methods to quantify
the 3-nitro-tyrosine content of protein digest, we demonstrated that the con-
tent of this nitrative adduct is increased 3 to 7-fold in affected brain regions of
AD subjects when compared to age-matched control brain regions (Hensley
et al., 1998). In addition to 3-nitro-tyrosine, we simultaneously measured the
dityrosine content of the protein digest and noted that this adduct followed
in a somewhat general pattern to that observed for 3-nitro-tyrosine content
(Hensley et al., 1998). Dityrosine adducts are formed by the bimolecular
addition of tyrosyl free radicals.
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Nitric oxide and peroxynitrite is more toxic to neurons

The clear demonstration of enhanced NO formation in affected regions of
AD brain evokes a possible mechanistic basis for the mediation of neuron
dcath or dysfunction. It has been shown that NO (and its reaction products)
is more toxic to neurons than to the glia which produces it in copious quanti-
tics (Dawson et al., 1993; Dawson and Dawson, 1996). Study of the neurotoxic
potency of NO and its reaction products have shown that its reaction with
superoxide to form peroxynitrite is a key event in its neurotoxicity (Lipton et
al., 1993). The exact molecular events involved in the neurotoxicity of nitric
oxide and reaction products are not known.

Enhanced signal transduction processes near -amyloid plaques

The involvement of neuro-inflammatory processes surrounding (-amyloid
plaques is expected to cause enhanced intracellular signaling (signal trans-
duction processes) in cells surrounding the plaques (Cotman et al., 1996).
Enhanced signal transduction processes are expected because, as noted
previously, 3-amyloid has been shown to activate microglia via the CD40/
CD40L complex (Tan et al., 1999) and to mediate formation of H,O, by
microglia (Colton and Gilbert, 1987) as well as to produce H,O, itself (Huang
ct al., 1999). H,0, has been shown to mediate enhanced signal transduction
processes in astrocytes (Robinson et al., 1999a). Enhanced levels of IL1 and
IL6 cytokines are noted near the plaques (Rogers et al., 1996; Cotman et al.,
1996) and these factors are expected to mediate the enhancement of signal
transduction processes. Activation of signal transduction processes involves
enhanced activation (phosphorylation) of MAP kinases. Our research effort
has provided a clear demonstration that enhanced signal transduction pro-
cesses oceur in cells surrounding the B-amyloid plaques in affected regions of
AD brain (Hensley et al., 1999). We found that activated p38 was readily
apparent in neurons and glia surrounding senile plaques in the AD brain.
Very little if any p38 activation was found in comparable regions of age-
matched control brains or in the cerebellum of AD brains. These results
provided the first demonstration of p38 activation in human tissue and defi-
nitcly show enhanced signal transduction processes in cells near the senile
plaques in the AD brain.

P38 MAP kinase and excess nitric oxide synthase

p38 is a redox-sensitive MAP kinase (Abe et al., 1996; Huot et al., 1997). p38
activation plays a role in apoptosis and/or inflammation processes depending
on the cell type. p38 is involved in apoptotic processes which are triggered in
PC12 cells by deprivation of nerve growth factor (Monti et al., 1996). p38 is
also involved in apoptosis in human fibroblasts (Schwenger et al., 1997). On
the other hand, inhibitors of p38 prevent the biosynthesis of TNFa and IL1 in
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stimulated monocytes (Ridley et al., 1997). Genes induced via the p38 kinase
cascade pathway are probably very important in neurodegenerative pro-
cesses. It was noted that p38 was activated in the hippocampus of gerbils 4
days after a global brain stroke was administered to these animals (Walton et
al., 1998). The hippocampus is the area of the brain most susceptible to tissue
injury in these animals and the brain region producing the most ROS follow-
ing a global stroke (Cao et al., 1988; Carney et al., 1992). It has been shown,
using inhibitors, that p38 activation is on the pathway to mediating the induc-
tion of iNOS in mouse astrocytes (Da Silva et al., 1997) and in rat glia cells
(Bhat et al., 1998). Pertinent to the importance of iNOS expression and excess
NO formation in stroked brain, Iadecola’s group have shown that enhanced
iNOS expression occurs after cerebral ischemia in rat (Iadecola et al., 1995a)
and that administering catalytic inhibitors of iNOS afforded some protection
from the tissue injury caused by a stroke (Iadecola et al., 1995b). PBN has
been shown to prevent the induction of iNOS in a mouse septic shock model
(Miyajima and Kotake, 1995).

Historical observations on neuroprotective activity of PBN in stroke

PBN has neuroprotective activities in several experimental models. We have
reviewed the research in this field (see references Floyd, 1997; Hensley et al.,
1996, 1997; Floyd, 1999b). The neuroprotective activity of PBN was discov-
ered serendipitously. Utilizing the gerbil global stroke model, we attempted
to make use of PBN to trap and identify free radicals during the reperfusion
phase. In previous experiments, we had demonstrated using salicylate trap-
ping that enhanced hydroxyl free radicals were formed during the reperfusion
phase of stroke (Cao et al., 1988; Carney et al., 1992). PBN had been used for
several years in analytical chemistry experiments to “spin-trap” and identify
free radicals in chemical reactions (Janzen and Blackburn, 1969). It had also
been demonstrated to be useful to trap certain free radicals in biochemical
(see references Poyer et al., 1978; Poyer et al., 1980) for example) and biologi-
cal systems (see references Bolli et al., 1988; Lai et al., 1979; Lai et al., 1986 for
example). Our intent was to use it to see if we could elucidate the free radicals
involved in experimental stroke. We found that PBN was an ineffective trap
for the free radicals formed in the gerbil stroke model (Oliver et al., 1990), but
discovered that it protected the gerbil from death caused by the stroke (Floyd,
1990). This observation has been replicated by other laboratories (Clough-
Helfman and Phillis, 1991; Phillis and Clough-Helfman, 1990a, 1990b) and in
fact PBN was shown to be neuroprotective (as assessed by brain necrosis)
even if administered up to 1 hour after brain reperfusion in the gerbil model
(Phillis and Clough-Helfman, 1990a). The results have since been extended
to the rat middle cerebral artery occlusion (MCAO) model where PBN was
shown to protect the affected brain region even if delivered up to 3 hours after
the start of reperfusion (Zhao et al., 1994). A 2,5- disulfonyl PBN derivative,
in development for the treatment of stroke, has also been shown to be active
in the MCAO model if delivered 2 hours after the start of reperfusion
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(Kuroda et al., 1999). It should be noted that Beal’s group have shown
considerable efficacy of PBN and its 2-sulfonated derivative (S-PBN) in sev-
eral experimental models of neurodegeneration (Schulz et al., 1995). These
include neuroprotective activities of S-PBN in excitotoxicity models using
NMDA, KA and a-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid.
Striatial Iesions caused by MPP*, malonate and 3-acetylpyridine were signifi-
cantly inhibited by PBN as well as by S-PBN.

Chronic dosing of PBN conditioned the old brain to
be less susceptible to stroke

We found that old gerbils (15-18 months old retired male breeders)
were much more susceptible to a global stroke than were young (3-month-old
males) gerbils (Floyd, 1990). If PBN was administered at a chronic low dose
(30mg/kg-day, twice daily) for 14 days to the old gerbils and then its adminis-
tration ceased, the old treated gerbils were more resistant to a stroke, in fact
nearly as resistant as were the young gerbils. This enhanced protection from
stroke remained with time after ceasing PBN administration but declined to
nearly 30% at 5 days (Floyd and Carney, 1996). The normal enhanced suscep-
tibility of the old gerbils to a stroke returned by 14 days after ceasing PBN
administration. There is very little chance that residual PBN remained in
the dosed animals for very long after cessation of its administration, for its
half-life is 132 minutes (Chen et al., 1990). Therefore, we have concluded that
PBN administration mediates the alteration of the old brain such that it
becomes more resistant to stroke (Floyd and Carney, 1996). In concert with
this notion is the observation that chronic PBN administration lowered the
normally age-enhanced oxidized protein levels in old gerbil brain back down
to that noted in young gerbils (Carney et al., 1991; Floyd and Carney, 1996).
Cessation of PBN administration resulted in the subsequent rise again of the
oxidized protein levels in old gerbils back to the original enhanced levels
(Carney et al., 1991). We also found that the enhanced behavioral errors of
the older gerbils, as compared to younger gerbils, were largely reversed by the
chronic 14-day PBN administration. Behavioral errors were assessed by a
radial arm maze.

Neuroprotective activity of PBN is not due to its free radical trapping activity

The mechanistic basis of the neuroprotective activity of PBN has not been
completely resolved. The discovery in 1969 of the mass action type reaction of
PBN with free radicals made it a very useful tool to characterize free radical
intermediates in analytical chemistry (Janzen and Blackburn, 1969). How-
ever, it is very clear that its neuroprotective action is not due to its ability to
trap free radicals in the conventional mass action “spin-trap” mode (see our
reviews Floyd, 1996; Hensley et al., 1997; Floyd, 1999b). One main reason is
the fact that PBN acts to protect in stroke when delivered up to several hours
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after the ischemic/reperfusion event. This means that it was not even present
when the most rapid burst of free radicals occurred. The most rapid burst
of free radicals in the stroked brain starts almost immediately after starting
reperfusion (Cao et al.,, 1988; Carney et al., 1992). PBN is neuroprotective
even if administered up to 3 hours after the start of reperfusion (Zhao et al.,
1994). This is a very strong argument against its direct scavenging of ROS as
the mechanistic basis of neuroprotective activity of PBN in the stroke model.
Additionally, the fact that PBN is very active at chronic, very low levels in
mediating a decrease in oxidized protein in old brain argues that its action is
not merely mass action in the simple sense of the concept. Significant protein
oxidation decreases have been noted in old gerbil brain after administering as
little as 1mg/kg-day PBN for 14 days (Floyd and Carney, 1996). Since PBN
distributes essentially equally to all tissues within 20 minutes after its injection
(Chen et al., 1990), then the maximum level of PBN that is expected to reach
the brain 20 minutes after a 1 mg/kg injection is less than 1 umolar. In chemical
and biochemical experiments where the mass action type free radical trapping
activity of PBN is utilized, it is normally used at 10-100mM; and then it is

- assumed that it does not trap all of the free radicals present. In stroke experi-

ments where it is administered as a bolus at 100mg/kg 2-3 hours after
reperfusion then the extracellular brain levels was shown by microdialysis to
be at most 500uM (Cheng et al., 1993). Therefore, it is not conceivable that
the biological activity of PBN depends upon its classical mass action-trapping
activity as noted in chemical systems. In fact, when compared to butylated
hydroxytoluene (BHT) or Vitamin E its ability to shut down lipid per-
oxidation in rat liver microsomal systems, PBN is about 1,000-fold less active
than BHT or Vitamin E (Janzen et al., 1994). Therefore, it is not even a very
good antioxidant, the potency of which depends upon its ability to trap free
radicals.

Behavioral deficits in brain aging/PBN effect

Arendash’s group has demonstrated that aged 24-month old rats treated for
4-5 months with a combination of established antioxidants (PBN, vitamin E,
and vitamin C) show improved learning and memory retention in the Morris
water maze compared to aged controls (Socci et al., 1995). In a follow-up
study, they injected aged 24-month old rats with PBN daily (32mg/kg, ip) for
up to 9.5 months (Sack et al., 1996). Several months into the treatment, Morris
water maze testing revealed that PBN- and vehicle-treated rats had similar
learning in this task. However, PBN-treated aged rats showed remarkably
higher memory retention in the water maze compared to controls. In later
one-way active avoidance testing, these same PBN-treated animals showed
significantly greater learning than controls. These findings, in addition to an
earlier study reporting PBN-induced enhancement of radial maze perfor-
mance in aged gerbils (Carney et al., 1991), clearly demonstrate a cognitive-
enhancing ability of PBN in aged rodents. Moreover, the PBN study (Sack et
al., 1996) showed that the same group of PBN-treated animals that exhibited
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cognitive enhancement also had reduced lipid peroxidation levels (as indexed
by TBAR formation) in brain areas important for cognition. Results from
other laboratories are consistent with several conclusions from our PBN
studies. First, 14-day administration of PBN to accelerated senescence mice
resulted in cortical synaptosomes showing EPR spectra indicative of less
oxidative stress (Butterfield et al., 1997). Second, daily PBN injections given
to accelerated senescence mice beginning in adulthood induced a 1/3 exten-
sion in average lifespan (Edamatsu et al., 1995) and PBN given in drinking
water to aged mice significantly extended both average and maximal lifespan
(Saito et al., 1998).

Hypothesis to explain the neuroprotective activity of PBN

We hypothesize that most, if not all, of the neuroprotective activity of PBN
can be accounted for by its ability to suppress signal transduction processes,
which can become exacerbated in the brain when it is suffering from any
number of insults or “abnormal conditions”. For the purposes of illustration,
we consider three general “abnormal” conditions that a brain may experience
where enhanced signal transduction processes and enhanced oxidative dam-
age are known to occur. The three general “abnormal” conditions are: A)
experiencing a large rapid insult, B) undergoing a constant, slowly accelerat-
ing-localized smoldering insult and C) experiencing a very low level constant
chronic stress. The brain conditions, which generally fit these three categories,
are stroke, Alzheimer’s disease and an advanced aging brain, respectively.
These general concepts are illustrated in Fig. 1. Clearly the conditions apply to
specific brain regions for each condition. Figure 2 illustrates the production of
“toxic gene products” that are formed at higher levels under each of the three
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Fig. 1. Representation of brain oxidative challenge states. Particular attention should be

directed to the degree of oxidative challenge (ordinate) which is very different in each of

the cases and the time-frame (abscissa) which is also very different depending on each of
the cases
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Fig. 2. Illustration of the reactive oxygen species (ROS) expected and the pro-

inflammatory cytokine level and toxic gene product levels expected in a coordinated time

dependent fashion. The time-frame and levels of each of the species are different in each
of the conditions

conditions. The general term “toxic gene products” refers to neurotoxic com-
pounds produced by genes that are induced or are generally upregulated by
the insults or abnormal conditions that challenge the brain. We hypothesize
that PBN suppresses the production of toxic gene products by suppressing the
exacerbated signal transduction processes that leads to the induction of genes
that form the neurotoxic products. Perusal of Fig. 2 illustrates that there is a
lag time after a stroke before the gene induction processes begin and there-
fore, if PBN is available during this lag time, then it is expected to mediate
the suppression of gene induction initiated by the stroke. In the case of the
advanced aging brain, much lower levels of pro-inflammatory cytokines and
other activation factors are present when compared to a stroked brain. Nev-
ertheless the amount of cytokines present is higher than in a younger brain.
The higher levels of pro-inflammatory cytokines and other factors cause the
brain to experience enhanced oxidative stress over a long period of time. We
postulate that this leads to enhanced protein oxidation and, for some un-
known reason, the brain becomes more susceptible to a stroke. In the case of
the advanced aging brain, it is then expected that chronic administration of
PBN would suppress the low-grade signal transduction processes and hence
lower the amount of oxidized protein. This then positions the brain to become
less sensitive to a stroke. This model would then explain the results we have
obtained with the stroked gerbils (Floyd, 1990) and the results Siesjo’s group
obtained in the rat MCAO stroke model (Zhao et al., 1994). This model
would also explain the results we obtained with chronic administration of
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PBN to the old gerbils (Carney et al., 1991; Floyd, 1990; Floyd and Carney,
1996). Based on this model to explain the results in the old gerbils and in the
stroked brain, we think that the Alzheimer’s brain suffers a condition that
is represented as an intermediate somewhere between the two extremes of
stroke and the advanced aging brain (see Fig. 1 and Fig. 2).

Utilizing the logic of this model we hypothesize that chronic PBN admin-
istration will suppress the enhanced signal transduction processes in the
Alzheimer’s brain and hence significantly lower the production of toxic gene
products and decrease the amount of oxidized protein. We consider that
dementia is due in part to damaged neurons caused by the production of
“toxic gene products” which are made as a result of enhanced neuro-
inflammatory processes that are triggered by f-amyloid plaques. Chronic
PBN treatment is expected to decrease neuro-inflammatory processes and
therefore, should be able to decrease dementia. It is possible that chronic
PBN administration, perhaps for a relatively short period of time, may restore
most of the normal functioning of the brain. If this hypothesis is valid, it is
expected that PBN would have no influence on B-amyloid deposition. There-
fore, the triggering stimulus would still be persistently present and hence,
cessation of PBN administration would then result in the restoration of the
neuro-inflammatory processes leading to enhanced protein oxidation and
eventually to the redevelopment of dementia.

PBN inhibition of signal transduction processes

Our interest in signal transduction processes as the possible site of action of
PBN became more intense as more and more evidence accumulated showing
that ROS is involved in some fashion in signal transduction processes (see
Reference Suzuki et al., 1997 for a review). There are many published reports
now demonstrating that PBN suppresses signal transduction processes both in
cultured cell systems as well as in animal models. The first demonstration of
this fact was made evident in the stroked gerbil brain (Carney et al., 1994),
where it was noted that PBN administration suppressed the induction of
several genes. A more clear-cut example was then made by Miyajima and
Kotake (Miyajima and Kotake, 1995) who demonstrated that PBN inhibited
the induction of iNOS in the liver of a septic shock model, i.e. LPS-treated
mice. They demonstrated that PBN inhibited iNOS induction but that it did
not act as a catalytic inhibitor of the fully expressed and functional iNOS
enzyme. Utilizing a multiprobe ribonuclease protection assay we have shown
in the rat LPS-induced septic shock model that PBN suppresses a wide array
of genes induced in liver (Stewart et al., 1999). Utilizing a neonatal rat model
of AIDs Dementia Complex where gp120, the HIV envelope protein, is
administered we demonstrated that PBN prevented the gp120-induced pro-
duction of NO in the neonatal rat brain (Tabatabaie et al., 1996). Our inter-
pretation of the results was that PBN prevented the induction of iNOS in the
brain. Kotake’s laboratory has recently demonstrated that PBN prevents the
enhanced synthesis of NO in brain induced by a direct brain injection of
LPS as an experimental model of bacterial meningitis (Endoh et al., 1999). In
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cellular systems, Kotake’s group has shown that PBN at higher levels inhibits
LPS-mediated upregulation of iNOS and COX-2 in a macrophage cell line
(Kotake et al., 1998). PBN prevented the LPS-mediated NFkB movement to
the nucleus. PBN at higher concentration inhibited catalytically the expressed
iNOS enzyme but did not act catalytically on the COX-2 enzyme (Kotake
et al., 1998). Our group has examined the efficacy of PBN in a series of
experiments involving signal transduction processes in cultured rat astrocytes.
The assays have focused on p38 activation processes in the astrocytes. The
results (Robinson et al., 1999a, 1999b) can be summarized as such: A) astro-
cytes are activated by various cytokines especially IL-1f and H,O, and B)
PBN as well as N-acetylcysteine (NAC) suppresses IL-13 and H,O, mediated
p38 activation. In this system, p38 is at first rapidly activated and then is
subsequently shut down in a biphasic response. It should be noted that synthe-
sis of cytokines is triggered in the activated cells and that PBN suppresses this.

Does PBN suppress neuro-inflammatory processes in vivo?

The previous sections provide background information which clearly impli-
cate that PBN would be expected to suppress neuro-inflammatory processes.
Prior to now, no experiment has ever been set up to directly test this notion in
an in vivo model. We report here results of an experiment clearly showing that
PBN does suppress signal transduction events linked to neuro-inflammatory
processes in a KA — brain damage model in rats. Although the KA model
is not a classical neuro-inflammatory model in the sense that AD would be, it
nevertheless does provide very valuable information and surprises.

We have utilized the KA model of epilepsy, where a single systemic dose
of the excitotoxin initiates a process of hippocampal neurotoxicity (Bernard
and Wheal, 1995). Rats treated with KA suffer recurrent convulsive seizures
and apoptotic neuron loss in the CA1 and CA3 regions of the hippocampus
(Pisa et al., 1980; Schwob et al., 1980). Seizure activity is correlated with
neuroanatomical changes including mossy fiber sprouting in the dentate
gyrus, hippocampal sclerosis, and eventually, neuronal death (Schwob et al.,
1980; Sperk et al., 1996; Cronin et al., 1992). The lesions produced by systemic
KA treatment resemble those seen in hippocampi of human temporal lobe
epileptics (Sommer, 1880; Schwob et al., 1980; Pisa et al., 1980; Sperk et al.,
1996). KA appears to act directly on non-NMDA type ionotropic glutamate
receptors (Bernard and Wheal, 1995), leading to cell death, which is predo-
minantly apoptotic in nature (Simonian et al., 1996; Bengzon et al., 1997,
Yang et al., 1997; Cheung et al., 1998). Our goal was to use KA to chronically
stimulate signal transduction pathways and determine if PBN administration
would suppress these events.

Materials and methods

Animals. Adult male Sprague Dawley rats (225-250g each) were injected subcutancously
behind the neck with KA (Sigma Chemical, St. Louis MO) at a dose of 10mg/kg, or with
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vehicle alone (saline). Animals were observed for 4 hours following KA treatment and
seizure activity was rated according to the scale developed by Racine et al. (1972) and
modified by Mathis and Ungerer (1992). Briefly, scizure severity was scored in five stages;
from Stage | where animals had mild myoclonus with moderate jerking movements of
one or two links to State 5 where animals had status epileptic, i.e. continuous seizure
activity for 30 minutes or longer with explosive jumps.

Phenyl-N-fert-butylnitrone was synthesized at the Oklahoma Medical Research
Foundation (Oklahoma City, OK) and was injected at a dose of 150mg/kg intra-
peritoneally, in saline vehicle, 90 minutes after KA treatment. The 150-mg/kg bolus of
PBN is a standard dose and has repeatedly been shown effective in rodent models of
ischemia-reperfusion injury and sepsis, which causes no obvious side effects such as
lethargy and hypothermia that, can sometimes be seen at higher doses (Hensley et al.,
1997).

Immunohistochemistry

For immunocytochemical studies, animals were anesthetized with pentobar-
bital and perfused with saline followed by 4% paraformaldehyde in saline.
Brains were sectioned into 30 um slices, which were incubated in 4% normal
goat serum in saline for 30min. at ambient temperature. After three washes
with saline, the sections were incubated overnight at 4°C in saline plus 0.025%
triton X-100, 1% goat serum, and primary antibody. Immunoreactivity was
visualized by the avidin-biotin-bridged immunoperoxidase method using 3,3’-
diaminobenzidine (DAB) as the chromagen (Hsu et al., 1981). The anti-
phospho-p38 antibody was an affinity-purified rabbit IgG purchased from
New England Biolabs (Beverly, MA), used at 1/300 dilution. Affinity purified
rabbit IgG antibodies against c-Fos, c-Jun and the p65 subunit of NFxB were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA) and were used at
1/1,000, 1/1,000, and 1/300 dilution, respectively. Photomicroscopy was per-
formed on a Zeiss Axioplan 2 spiker instrument (Carl Zeiss Inc., Thornwood,
NY).

Electromobility gel-shift assays (EMSAs)

EMSASs were conducted to determine binding of activated NFxB complexes
to synthetic oligonucleotide consensus sequences. The NFxB-binding oligo-
mer was a 22-mer: 5'-GATCGAGGGGACTTTCCCTAGC-3', purchased
from Stratagene (La Jolla CA). Double-stranded oligomers were labeled with
[y-2P]ATP using 10u/reaction of T4 polynucleotide kinase (U.S. Biochemical
Corp., Cleveland, OH). Hippocampi were dissected free and homogenized,
and nuclear protein extracts were prepared as described (Sonnenberg et al.,
1989). Binding reactions (30uL) were performed at room temperature in
reaction mixtures containing 40ug protein, 20mM Tris-HCL pH 7.8, 100mM
NaCl, SmM MgCl,, 1mM EDTA, 5mM dithiothreitol, 50ug/mL bovine se-
rum albumin, 100pug/mL sonicated salmon sperm DNA, 10% glycerol, and
approximately 0.2ng (50,000cpm) of the specific probe. Protein-DNA com-
plexes were separated on 5% nondenaturing polyacrylamide gels run at 150V
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in 50mM Tris/SOmM boric acid/1lmM EDTA. Gels were then dried and
autoradiographed overnight.

Terminal deoxyuridine nick-end labeling (TUNEL)

DNA fragmentation characteristic of apoptosis was visualized by 3’end label-
ing with biotin-derivatized deoxynucleotides via terminal deoxynucleotidyl
transferase catalysis. A commercially available TUNEL kit was used (TdT
FragEL, Calbiochem, San Diego CA). Biotinylated nucleotides were detected
using streptavidin-conjugated horseradish peroxidase and diaminobenzidine
(Hsu et al., 1989). Tissue sections thus labeled were counterstained with
methyl green as an aid to morphological evaluation.

Ribonuclease protection assays

Approximately 100mg of hippocampal tissue was homogenized in trizol
isolation reagent (Life Technologies, Gaithersburg, MD) using a Dounce-
type homogenizer. Total RNA in the extract was quantified by UV absor-
bance at 260nm. Inflammation and apoptosis-associated mRNA species
were selectively visualized using a multiprobe ribonuclease protection assay
(RPA). Radiolabeled probes were synthesized from DNA templates contain-
ing a T7 RNA polymerase promoter (Pharmingen, San Diego, CA). Tem-
plates were transcribed in the presence of [y-¥P]JATP to yield radioactive
probes of defined size for each mRNA. Probes were hybridized with total
hippocampal RNA, then samples were treated with RNAse A and T1 to
digest single-stranded RNA. Intact double-stranded RNA hybrids were re-
solved on 5% polyacrylamide/8M urea gels to produce bands detected by
autoradiography.

Results

Beginning approximately 30 minutes after KA injection, animals displayed
archetypical epileptiform behavior including “wet dog” shakes, facial clonus,
nodding, and forelimb clonus. Three hours after injection, KA-treated rats
showed full limbic motor seizures including rearing and loss of postural con-
trol, as well as hypersalivation, circling and jumping. Rats treated with PBN 90
minutes after KA injection did not develop full limbic seizures by the 3-hour
time point (Table 1). Moreover, PBN rescued the KA-treated animals from
mortality when evaluated at the end of the four-day experiment (Table 1). No
behavioral, physiologic or histologic alterations were observed in animals
receiving PBN only.

The first immunochemical analysis of KA-treated rats was aimed at deter-
mining whether PBN could antagonize the AP-1 system in vivo. Immu-
nocytochemical analysis was performed using well-characterized antibodies
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Table 1. Suppression by PBN of limbic seizures and mortality in kainic acid-treated rats.
Seizure activity was ranked on a five-point scale as described in the methods

Treatment Seizure intensity Mortality (4 days)
Kainic acid (N = 30) 49 =04 12/30 (38%)
Kainic acid + PBN (N = 20) 2.3 = 0.3% 0/20 (0% )**

#P < (.05 (Student’s t-test)
#5 P < (.02 (¢ test)

against the two AP-1 subunits, c-Fos and c-Jun. Within hours of KA treat-
ment, c-Fos and c-Jun expression increased in hippocampal neurons, particu-
larly within the CA1 and CA3 regions. The c-Fos and c-Jun expression was
maintained throughout the four-day experiment (not illustrated), consistent
with previously reported data (Bing et al., 1997). A single injection of PBN
completely suppressed c-Jun expression in both CA regions and in the dentate
gyrus while c-Fos expression was suppressed by PBN only in the CAl and
CAZ3 regions, where most of the pathological changes were manifest (data not
shown). We also have done an immunohistochemical analysis of p38 activa-
tion using an antibody specifically directed against the dual-phosphorylation
motif, which is present only on the active p38 kinase (Raingeaud et al., 1995).
Within 4 hours of KA treatment, p38 activation was seen within the hippoc-
ampus in a pattern consistent with that of AP-1 activation (Fig. 3). As in the
case of AP-1, PBN suppressed p38 phospho-activation (Fig. 3). The p38
system remained activated somewhat above the level of controls at the four-
day timepoint, but this chronic activation was not as dramatic as in the AP-1
case (data not shown).

The NFkB transcription factor is also ubiquitously activated by physi-
ologic stress and may potentiate excitotoxic damage in striatal neurons (Qin
et al., 1998). Alternatively, NFkB seems to serve a protective role in hippoc-
ampal neurons undergoing an oxidative insult (Mattson et al., 1997) and may
actually play an antiapoptotic role in TNFa-stimulated cells (Van Antwerp et
al., 1996; Wang et al., 1998). NFkB is part of a signal transduction cascade,
which has traditionally been thought of as distinct from the Jnk and p38
cascade modules, though correlated activation of the three pathways is
often noted in cell culture experiments. Several lines of evidence now suggest
that p38 and other MAPK enzymes may hyperactivate NFkB (reviewed in
Schulze-Osthoff et al., 1997), while inhibition of p38 can suppress
transactivational potential of NFxB (Vanden Berghe et al., 1998). We
therefore sought to determine whether NFxB was activated by KA in a PBN-
sensitive manner. NFkB activation can be indexed several ways. Immunologi-
cally, NFxB activation can be inferred from increased immunoreactivity of an
epitope on the p65 subunit, which is exposed upon NFxB recruitment (Rice
and Ernst, 1993). As shown in Fig. 4, NFkB-p65 immunoreactivity in the
hippocampus increased dramatically within hours of KA treatment, and this
effect was suppressed by PBN. The immunochemical data was corroborated
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Control

Fig. 3. Kainic acid increases p38-MAPK activation in the hippocampus as indicated by

increased phosphorylation of the p38-MAPK activation domain. The CA1 subregion is

depicted. Immunohistochemistry was performed using an antibody directed against the
phosphorylation domain of the active p38 MAPK enzyme (pThr'®-Gly'8!-pTyr!®?)

by EMSA analysis, which showed a dramatically increased NF«B binding
activity in hippocampal nuclei of KA, treated rats, which was partially miti-
gated by PBN cotreatment (Fig. 4).

Hyperactivation of the Jnk, NFxB and p38 signal transduction path-
ways could be anticipated to have numerous detrimental consequences. All
three signaling pathways have been linked to transcription of inflammatory
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Fig. 4A-D. Kainic acid increases NFkB activation in the hippocampus. A, B, and C

illustrate exposure of the p65 subunit of the NFkB complex following KA treatment

(arrows). D Electromobility gel shift assay demonstrating increased NFxB binding activ-

ity in nuclear extracts induced by KA treatment and suppressed by cotreatment with

PBN. Specificity of binding was evidenced by competition for the NFkB complex by an
unlabeled (cold) oligonucleotide probe (rightmost lane)

cytokines and to modulation of apoptosis (Kawasaki et al., 1997; Kummer et
al., 1997; Yang et al., 1997; Qin et al., 1998). We therefore sought to determine
whether cytokine and proapoptotic genes were being transcribed at a greater
rate in the KA treated rats than in normal rats, and whether PBN could
abrogate such an effect. Using a multiprobe ribonuclease protection assay,
several inflammatory cytokines were clearly found to be transcribed follow-
ing KA treatment (Fig. 5). IL1a, IL1-f, IL-6 and TNF-a transcription were
strongly induced by KA. Within the timeframe that cytokine transcription was
enhanced, several proapoptotic genes were also induced. Most notably, the
Fas antigen mRNA was strongly induced following KA and this elevation was
maintained for at least four days (Fig. 6). PBN treatment suppressed tran-
scription of both inflammatory cytokine gene products and proapoptotic gene
products while having minimal effect on transcription of constitutively-
expressed “housekeeping genes” including the L-32 ribosomal mRNA and
glyceraldehyde phosphate dehydrogenase mRNA (Figs. 5, 6). PBN suppres-
sion of cytokine mRNA transcription was relatively unspecific. Interestingly,
PBN displayed particular potency in suppressing Fas antigen and caspase 3
transcription, while other apoptosis-associated mRNA species analyzed by
RPA were somewhat less affected by the nitrone (Fig. 6).
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Fig. 5. Kainic acid stimulates the transcription of proinflammatory cytokines in the hip
pocampus as determined by multiprobe ribonuclease protection assay (RPA)
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Fig. 6. Kainic acid stimulates transcription of proapoptotic genes in the hippocampus as
determined by multiprobe ribonuclease protection assay (RPA)
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As a final indication of KA-induced hippocampal damage, in situ TUNEL
staining was performed to assess frank apoptosis. KA treatment caused DNA
damage indicative of an apoptotic process within four days of subcutaneous
administration (data not shown). Apoptosis was largely restricted to the CAl
and CA3 regions of the hippocampus wherein c-Fos was most strongly ex-
pressed. Administration of PBN 30 minutes after KA exposure strongly inhib-
ited this apoptosis as indicated by diminished TUNEL staining in hippocampi
from PBN treated animals. TUNEL staining for apoptotic nuclei therefore
corroborates the pattern of KA-induced and PBN-sensitive immediate early
gene expression, and the pattern of proapoptotic gene induction illustrated in
Fig. 6.

Discussion

The results of the KA induced brain damage experiment highlights several
important points. These include: A) the clear demonstration of the
neuroprotective activity of PBN in the KA-induced epilepsy model and B) the
potent activity of PBN in suppressing signal transduction processes in
the three MAP kinase pathways (AP-1, NFkB and p38) in an in vivo model
where excitoxicity and apoptosis have already been implicated. This suggests
an inhibition of these three pathways by the experimental compound phenyl-
tert-butylnitrone was associated with diminished cytokine elaboration, pre-
vention of neuronal apoptosis, reduced seizure activity, and reduced
mortality. While the AP-1, NFkB, and p38 pathways are known to respond
positively to oxidants and negatively to antioxidants in cell culture (Suzuki et
al., 1994; Guyton et al., 1996; Robinson et al., 1999a), the data in this present
study are the first to demonstrate the sensitivity of these three pathways to
PBN (sometimes classed as an antioxidant compound) within the context of
an established in vivo model of hippocampal neurodegeneration.

The findings of the present study extend upon previous observations
concerning the broad-spectrum neuroprotective action of nitrone compounds,
and provide a novel context for discussing the pathology of excitotoxicity.
PBN and related nitrones have been shown to suppress striatal excitotoxic
lesions induced by NMDA, KA, and AMPA, though not by virtue of any
obvious direct interaction with glutamate receptors (Shultz et al., 1995). Simi-
larly, PBN and a sulfated analog inhibit striatal lesions caused by mitochon-
drial inhibitors such as malonate and the 1-methyl-4-phenylpyridinium
(MPP+; Shultz et al., 1995). Nitrones suppress apoptosis and oxidative stress
in cultured Down’s syndrome neurons (Busciglio and Yankner, 1995), and
similarly inhibit chemically induced thymocyte apoptosis in vitro (Slater et al.,
1995), though the influence of nitrones on apoptosis in vivo has not been well
studied. Unfortunately, the pharmacologic effects of nitrones in most
previous investigations were not correlated with biomarkers of oxidative
stress, inflammation or apoptosis. The present data suggest that suppression
of apoptosis by PBN in the KA model and possibly other models of
neurodegeneration is likely due to mitigation of proinflammatory or
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proapoptotic gene expression under the control of the AP-1, NFxB, and p38
MAPK pathways. While the ultimate cellular target(s) for PBN action remain
unclear, the present data suggest that the broad-spectrum neuroprotective
action of the nitrone class of compounds (Hensley et al., 1997) might be due,
in part, to antagonism of crucial oxidation-sensitive signal transduction ele-
ments linked to the initiation of apoptotic programs.

PBN neuroprotection and future novel therapeutics

The data clearly show that administration of PBN at least 90 minutes after the
administration of KA affords significant protection. It is not known the time
to give PBN in reference to KA for achieving maximum efficiency. However,
in preliminary experiments, we noted a lack of protection and in fact, perhaps
an enhancement of KA toxicity if PBN was given 30 minutes prior to giving
the toxin. It is possible in this case that PBN perhaps inhibits metabolic
processes whereby KA is rendered inactive, although this has not been stud-
ied. The fact that PBN was effective after the KA administration, again as in
the case of stroke, indicates that an insult to the brain sets off processes which
require some time to reach their full destructive potential. Much evidence in
the case of stroke, and now as we have presently demonstrated in the KA
model, suggests that signal transduction processes lending to gene induction is
a requisite to begin the events leading to brain injury. Agents, such as PBN,
which interfere or suppress these processes occurring during the lag phase,
may be good candidates for therapeutics of several neurodegenerative
diseases.

In the case of Alzheimer’s disease, we consider the J-amyloid plaques are
localized constant trigger centers. Therefore, to suppress this constant stress it
requires the constant administration of an agent that would suppress the
localized neuro-inflammatory processes. We envision that treatment with the
novel therapeutic, based on the notions outlined here, although it probably
would not reverse the P-amyloid deposition, it would however ideally sup-
press the brain damage caused by the neuro-inflammatory processes triggered
by the senile plaques. We consider it likely that the dementia associated with
AD is the indication that would benefit the most from the novel therapeutics
that may be developed based on these concepts. These ideas have yet to be
thoroughly tested but do offer a new approach and possibly an inordinate
potential for the treatment of several neurodegenerative diseases.
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Abstract

C-Fos and the Fos-related antigens (FRA) are induced by various stimuli. A novel 35-37 kDa FRA was induced much
longer after the treatment using kainic acid (KA) and may be very important for neuronal survival after brain damage. To
identify this long-term FRA, we have constructed a cDNA library derived from hippocampus after KA treatment and
screened it with an antibody highly conserved M-peptide region of FRAs. One gene, MP13, was cloned with a 1662 bp
open reading frame and coded for a 554-amino acid protein. MP13has a leucine zipper region, a glutamine repeat region,
and has high similarity to the activator of the small guanosine triphosphate (GTP)ase Rab5. Gel retardation analysis
revealed that MP13functions as a GTP regulation related factor. © 2000 Elsevier Science Ireland Ltd. All rights reserved.

Keywords: Fos-related antigen; Transcription factors; Gene; Cloning; Guanosine triphosphate; Immunoscreening; Gel-shift

The induction of c¢-Fos and the Fos-related antigens
(FRA), including Fos B, Fra-1 and Fra-2, by various stimuli
has been extensively studied [1,3,4,6,9]. In most cases, the
induction of FRA are rapid and transient, lasting about 14 h
after the stimuli [7,8]. However, several laboratories includ-
ing ours have described a novel 35-37 kDa FRA which is
induced for a much longer time after stimulation and whose
distribution is distinct from the induction of other FRAs.
This long-term elevated FRA can be induced by the chronic
administration of cocaine [6,10] or morphine [6]. We have
found that systemic administration of kainic acid (KA), a
glutamate analog, induced a 35 kDa FRA that persisted for
up to 5 months in the granule cells of the dentate gyrus
[1,5,9]. The administration of KA not only caused epileptic
seizures but also damaged certain areas of the rat brain,
especially the hippocampus where axonal sprouting from
the granule cells of the dentate gyrus occurred. The long-
lasting changes of FRA expression, thus, may underlie these
long-term effects of the KA. This long-term expression of

* Corresponding author. Tel.: +1-859-323-9708; fax: +1-859-
323-5946.
E-mail address: gbing @ pop.uky.edu (G. Bing).

FRA after KA treatment suggests that the granule cells of
the dentate gyrus remain activated for a protracted time,
which presumably reflects permanent changes in their geno-
mic programming. The gene encoding for this FRA protein,
therefore, may be very important both in the brain’s adapta-
tion to cocaine and morphine, and in neuronal survival and
sprouting after brain damage.

In order to identify this long-term FRA, we have
constructed a cDNA library derived from the hippocampus
3 days after KA treatment. One of 41 positive clones, MP13,
from 2 million screened colonies was selected. We now
report the cloning and expression of MP13, which may func-
tionally relate to guanosine triphosphate (GTP) regulation.

The KA-treated rat hippocampal c¢DNA library was
constructed with the Lambda ZAP cDNA synthesis kits
(Stratagene, La Jolla, CA). Adult male Fischer rats (250~
300 g, Charles River, Raleigh, NC) were injected intraper-
itoneally (i.p.) with KA (8 mg/kg; 1 ml/kg) or saline
(control). Only the animals with convulsive behavior (fore-
limb clonus with intermittent episodes of whole-body
clonus) within 4 h following KA administration were used
for this study. Rats were sacrificed by decapitation 3 days

0304-3940/00/$ - see front matter © 2000 Elsevier Science Ireland Ltd. All rights reserved.
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Fig. 1. The complete DNA and protein sequences of MP13clone. The cloned cDNA sequence of the MP73has 2221 bp, which contains an
open reading frame of 1662 bp, a 60 bp 5'-non-coding region, and a 500 bp 3’-non-coding sequence with a poly(A)* tail. The predicted
sequence of the 554 amino acid MP13 protein is indicated by the single-letter amino acid code. The polyadenylation signal AATAAA is
underlined. The heptad leucine repeats and octet glutamine repeats are printed in bold.

after KA treatment, and RNA of hippocampi were extracted
with TRI rcagent and purified from oligo-dT affinity
columns. Five pg of poly(A) + -rich RNA were used to
construct the Tambda ZAP 11 ¢cDNA library. The cDNA
was synthesized with oligo-dT primer at 37°C for 1 h with
SuperScript 1 reverse transcriptase in 1 X reverse transcrip-
tase buffer, 200 mM dithiothreitol, and 2 mM dNTP. The
second strand of the DNA was synthesized at 16°C for 2 h
with Escherichia coli DNA polymerase and E. coli DNA
ligase in 1 X sccond strand buffer and 2 mM dNTP. The
synthesized DNA was ligated with Sa/l adapters first, then

digested with Notl, size-fractionated, inserted to a cloning
vector and packaged in E. coli cells.

The Fos-related antigen (FRA) gene was screened with
the antibody generated against a highly conserved sequence
of the M-peptide of the FRA [3,6] using the PicoBlue™
Immunoscreening Kit (Stratagene, La Jolla, CA). Colonies
were seeded onto LB plates supplemented with 2 mM JPTG
and transferred onto a nitrocellulose membrane. The
membranes were blocked in a Tris—NaCl/Tween-20 buffer
containing 3% skim milk and incubated at 4°C overnight
with a 1:1000 dilution of FRA antiserum. After washing in
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70 690 700 710
400 410 420 430 440
* * * * *
Mpl3 IQELHQLVRH TRQQARARQQ AQEHFEAERLR IEIVKLREAL DEETAAKASL
AR AGUAVYAY VAR AYY =TV VAYSAY—YUY Y=ty—t A=t Ayy———t Ayt
Rabaptin5 1lkEgiQaeqc lkenleetlQ leienckeei asIssLkaeL erikveKqql
720 730 740 760
450 460 470 480 490
* * * * *
Mpl3 EGQLRVQREE TDVLEASLCS LRIETERVQQ EHHKAQLTDL LSEQRAKALR
AAgAAA AN YAYAA LA A ALRALAYUAR _yyRAYASAR AyRnn_anys
Rabaptin5 EstLReksqq lesLq- ei-k islEeqlkke taaKAtveqL mfEeknKAgR
770 780 790 800 810
500 510 520 530 540
*
Mpl3 LQAFLETSEQ VQRDFVRLSQ ALQVRLEQIR QADTLEQVRS ILDEAPLRDI
o AAA A ANA ANAAAAAAAA AAAAAAANAR AAARAAANAA AANAA FPSIPON
Rabaptin5 LQLELdVSEQ VQRDFVkLSQ tLQVqLErIR QADsLEriRa ILndtkLtDIT
0 Q 860
550
*
Mpl3 KDIKDS*

Rabaptinb nqlpet

Fig. 2. MP13 peptide sequence was homologous to the C-term-
inal peptide sequence of rabaptin-5. Peptide homology search-
ing was done with the Protein ldentification Resource (PIR)
database. M13 protein represents MP13 peptide sequence;
rabapti represents the rabaptin-6 peptide sequence; ‘A’ indi-
cates the identity between the two amino acid residues; 'V’
indicates that there are two different amino acid residues. The
numbers indicate the positions of residues in the two sequences.

the Tris—NaCl buffer, the positive colonies were visualized
using the alkaline phosphatase method. Forty one positive
clones were isolated from 2 X 10° plaques. Polymerase
chain reaction (PCR) was performed using primers
conserved in all FRA. The predicted PCR fragments were
found in one clone, MP13.

To further identify the clones, the fusion protein of MPI3
was tested by Western blot analysis. MP13 was only recog-
nized by FRA antibody, but not by c-Fos, Fra-1, or Fra-2
antibodies (unpublished data). MP/3 and five other selected
clones were used for further sequence analysis.

DNA samples for sequencing were prepared with
Wizard™ Mini-Preps kits (Promega, Madison, WI) accord-
ing to the manufacturer’s protocol and 1 pg DNA was
sequenced by the dideoxynucleotide chain termination
method with Sequenase 2.0. DNA homology searching was
done in the GenBank database with GCG software and the
predicted amino acid sequences were compared with the
Protein Identification Resource (PIR) database. MP13
DNA sequence has been submitted to GenBank nucleotide
sequence database with accession number U34932.

A complete cDNA sequence, 2221 bp, was generated
from MPI3. As shown in Fig. I, the whole sequence
contains an open reading frame of 1662 bp, a 60 bp 5'-
non-coding region and a 500 bp 3’-non-coding sequence
with a poly(A)™ tail. It codes for a protein of 554 amino

acid residues. This protein contains a series of four leucine
heptad repeats which are separated by 111 amino acid resi-
dues from a series of four glutamine octet repeats. MPI3
protein has same peptide sequence except that the 5th amino
acid was replaced by a Q (glutamine). The leucine repeats
found in MP13 protein resemble the leucine zipper found in
all of known FRAs. However, MP]3 protein apparently
lacks the basic DNA-binding region in all of known
FRAs. This result suggests that MP13 protein has a different
function from the common function of the FRA protein. The
function of four octet glutamine repeats is currently
unknown. It warrants further investigation.

The homology searching revealed that two regions of the
MPI13 protein sequence are similar to the C-terminus of
rabaptin-5 (Fig. 2), an activator of the small GTPase
Rab5 [12]. The first region extends from peptide position
298-335 and has more than 80% similarity to rabaptin-5.
This region represents an a-turn point. The second region
from peptide position 481 to the end has more than 90%
similarity to rabaptin-5. Since rabaptin-5 is a activator of
small GTPase, the homologous searching result suggested
that the function of MP13 be related to the GTP regulation.

To identify the function of MP13, we translated MPI13 in
vitro and tested the translated MP3 protein in gel mobility-
shift assay. The translation products of MP13 DNA (0.1 pg;
Fig. 3, lanes MP13) and vector SK (Fig. 3, lane SK) in vitro
was generated by the Single Tube Protein™ system (Nova-
gen, Madison, W) using T3 RNA polymerase. The transla-
tion mixtures were analyzed by gel electrophoresis with
(Fig. 3, Lanes +FRA Ab)/without immunoprecipitation
with the FRA antibody, and with (Fig. 3, Lane +M

SK MP13 MP13 MP 13
+FRA Ab + FRA Ab
+M peptide
97 kDa —
68 kDa —
A
43 kDa -
29 kDa —~ —

Fig. 3. Translation of MP13 DNA in vitro. Translation of MP13
DNA (0.1 pg; lanes MP13) and vector SK (lane SK) in vitro with
the Single Tube Protein™ system using T3 RNA polymerase. The
translation mixtures were analyzed by gel electrophoresis. The
translation products of MP73 cDNA was immunoprecipitation
(MP13, + FRA Ab) with the FRA antibody, and with (lane +M
peptide)/without M-peptide competition.
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peptide)/without  M-peptide  competition.  The  results
showed that MP/3 generated two major bands with apparent
molecular weights of 62 and 32 kDa (Fig. 3). Both bands
can be recognized by the FRA antibody and abolished by the
competition with M-peptide, which showed that translated
MP13 products were especially recognized by FRA anti-
body. Next, we performed a non-denaturing gel mobility-
shift assay to test whether the function of the MP/3 protein
was related to GTP regulation. Translated MP13 was bound
to protein at room temperature for 20 min with/without the
addition of GTP or GDT in binding mixture (20 mM Tris—
HCI, pH 7.8, 100 mM NaCl, 5 mM MgCI2. | mM EDTA, 5
mM DTT, 50 pg/ml bovine serum albumin, 100 pg/ml
sonicated salmon sperm DNA, and 10% glycerol). Protein
complexes were separated on a 5% non-denaturing polya-
crylamide gel. Gels were run at 150 V in 50 mM Tris/50
mM boric acid/ImM EDTA, dried and autoradiographed.
The results revealed that the addition of GDP did not affect
the binding of MP13 protein to other proteins (Fig. 4, lanes
GDP +). However, the addition of GTP aborted the binding
of MP13 protein to other proteins (Fig. 4, lanes GTP +).
Sequence comparison revealed that part of the MP/3
protein is more than 90% similar to the C-terminus of the
activator of the small GTPase Rab5, rabaptin-5 [12]. The C-
terminus of rabaptin-5 is predicted to be mainly o-helical
and contain heptad repeats characteristic of coiled-coil
domains. It might interact with soluble N-ethylmaleimide-
sensitive factor attachment protein receptors (SNARE) that
display coiled-coil domains [11] or it could be involved in

MP13 - - - + + o+ o+ + + + + +
GTP - + - - + - - + - - + -
Gbr - - % - - % - - 4 - - +
Co-Tran - - - - - - 4+ + + - - -
Membrane - - - - - = - - -y + +
i
* *® e

Fig. 4. The MP13 binding activity to other proteins in the in vitro
translation mixture. The MP13 binding activity to other proteins
was identified by gel mobility-shift assay on a 5% non-denatur-
ing polyacrylamide gel. Gels were run at 150 V in 50 mM Tris/50
mM boric acid/T mM EDTA, dried and autoradiographed. The
addition of translated MP13 products (MP13), 100 pM of guano-
sine 5'-O-(3-thiotriphosphate) for 20 min in the reaction mixture
(GTP), and 100 .M of guanosine 5'-diphosphate for 20 min in the
reaction mixture {GDP) were showed. Co-Tran represents the
addition of reagents before the start of the translation of MP13;
membrane represents the addition of 1 pl of microsomal
membranes in the reaction mixture. ‘—' Indicates no addition
of reagents and ‘+’ is for addition of reagents. The arrow indi-
cates the MP13 band on the non-denaturing gel. Note that the
addition of GTP aborted the MP13 band in the gel.

the formation of complexes with other molecules acting
upstream of SNAREs. Sequence comparisons of MPJ3
protein with other members of the rab protein family did
not show a high degree of similarity. Since there is no
significant similarity within rabaptin 5, rabaptin-3A [11]
and rabin3 [2], it is hard to determine the actual function
of MPJ]3. However, our gel mobility-shift assay showed that
the binding of MPI3 protein to other proteins was GTP
related. Further investigation on the interaction of MP/3
protein with Rab5 and rabaptin-5 is in progress in order
to reveal the function of MP/3.

This study was supported by a grant from US Army
Medical Research (98229027 to GB).
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